The Extraordinary Career of Professor Dr. Simon van Creveld†

Paul J. W. Stoelinga, 1 Walter E. Berdon, 2 and M. Michael Cohen Jr. 3*

1Department of Oral & Maxillofacial Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
2Department of Radiology, Morgan Stanley Children's Hospital, Columbia University, New York, New York
3Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada

Manuscript Received: 7 June 2013; Manuscript Accepted: 3 October 2013

Simon van Creveld received both the MD and PhD degrees and had a multifaceted medical and scientific education at many hospitals and research institutes in the Netherlands, Germany, and the UK. He and his wife were the first to develop insulin for the Netherlands. His major interests were in hemophilia and hemorrhagic disorders, which accounted for 87 of his publications. In 1934, van Creveld demonstrated that a dispersed protein fraction obtained from serum could reduce the clotting time of hemophilic blood. His interest in glycogen storage disease resulted in van Creveld–von Gierke disease for which van Creveld contributed four published articles. The Ellis–van Creveld syndrome, also known as chondroectodermal dysplasia, was published in 1940 and became well known to medical geneticists. During the Nazi occupation of the Netherlands, van Creveld's professorship was taken away from him because he was Jewish. His visits to hospitals of concentration camps to treat babies and give pediatric advice while wearing a Jewish Yellow Star and interacting with SS Commandants in charge, and then leaving can only be described as amazing. After the war, his professorship was returned, and in the same year as his retirement, he established a large Hemophila Treatment and Research Center now known as the Van Creveld Clinic, which celebrated its 40th anniversary in 2005.

How to Cite this Article:

INTRODUCTION

Often, a perspective on a well-known medical professor from the past can be gained by an obituary and reading a few other articles. This is not true for Simon van Creveld, MD, PhD, who we found needed multiple documents in Dutch, German, French, Spanish, and English together with many personal communications (Table I) to gain a perspective on him. What emerges here, we believe, for the very first time is a full account of this extraordinary man (Fig. 1), who could speak and write in Dutch, German, French, and English.

Key words: hemophilia; hemorrhagic disorders; insulin; Van Creveld Clinic; van Creveld–von Gierke disease; Ellis–van Creveld syndrome; British Paediatric Association Meeting (1939); Camp Westerbork; Camp Vught; Jewish background; Liber Amicorum; Honorary Memberships; Acta Brevia Neerlandica

Of specific interest are the following: (1) van Creveld’s multifaceted medical and scientific education occurred at a number of different hospitals and research institutes not only in the Netherlands, but in Berlin, Germany and in Birmingham, UK as well; (2) his major interests were in hemophilia and hemorrhagic disorders, which are found in 87 of his publications; (3) the same year he retired as Professor and Chairman of Pediatrics at the University of Amsterdam, he set up a hemophilia clinic to treat patients and carry out research, and this large institute, now known as the Van Creveld Clinic, celebrated its 40th anniversary in 2005; (4) van Creveld was removed as a professor during the Nazi occupation of the Netherlands because he was Jewish; (5) however, he was called upon at two hospitals of concentration camps about babies, and wearing the Yellow Jewish Star to meet with the SS Commandants in charge. He treated the babies, made recommendations to the Commandant, and left the camp; (6) he lived in the Netherlands during the occupation and the Nazis knew where he was and left him alone until the end of 1943, when he had to go into hiding.

†This publication is dedicated to my Fellows: Wagner Baratela, Angela Castro, Camila Melo, Francesca Romana di Raimo, and to the memory of Bernarda Strauss.

*Correspondence to:
M. Michael Cohen Jr., Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
E-mail: mmichael.cohenjr@gmail.com
Article first published online in Wiley Online Library (wileyonlinelibrary.com); 00 Month 2013
DOI 10.1002/ajmg.a.36334
Wiedemann [1990]. This is inaccurate and close analysis shows that he is responsible for approximately 220 articles. However, this number is highly significant considering that the publication process was entirely different before the internet and emails. Manuscripts were typewritten and were posted back and forth by regular mail. Also, a much smaller number of journals was available for publication in those days. Of his 220 publications, about 193 could be identified by type. There were 118 in Dutch, 62 in English, 15 in French, and 2 in Spanish. It is clear that van Creveld knew Dutch, German, French, and English, and it is assumed that his two articles in Spanish were translated for him. Of his articles, 87 dealt with hemorrhagic disorders, which were his major interest [van Mourik, 2004; Mauser-Bunschoten et al., 2005], particularly hemophilia [Bendien and van Creveld, 1935, 1937a,b, 1938; van Creveld, 1934a; 1967, 1968, 1971; van Creveld and Buchner, 1971; van Creveld and Mastenbroek, 1941, 1946a,b; van Creveld and Paulssen, 1949, 1950, 1952, 1953].

Van Creveld had an interest in glycogen storage disease [van Creveld, 1934b, 1952, 1953; van Creveld and van der Linde, 1939], which was named after him as van Creveld–von Gierke disease for which he provided four published articles [Whonamedit?]; had an interest in myocarditis [van Creveld et al., 1954; de Jager and van Creveld, 1956; van Creveld and Hartog, 1958; van Creveld, 1962] associated with rheumatoid arthritis [van Creveld et al., 1951; van Creveld and Kuipers, 1950, 1952]; and had an interest in the management of diabetes mellitus [van Creveld, 1955, 1957].

In the French literature, van Creveld discussed diseases diagnosed in children coming back from the Japanese concentration camps in the Dutch Indies [van Creveld, 1946] and wrote another paper on nephrosis caused by lipid storage [van Creveld and Arons, 1947].

He published 3 articles in Lancet [van Creveld et al., 1952, 1953; van Creveld, 1971] and 2 in Nature [van Creveld and Mastenbroek, 1946b; van Creveld and Pascha, 1968]. Van Creveld and Buchner [1971] in a letter to the JAMA responded to an article by George and Breckenridge [1970], who wrote on the use of factor VIII and factor IX concentrates during surgery. Van Creveld also wrote articles in the dental literature [van Creveld, 1954]. Two were with Buchner, a dentist, about the extraction of teeth in hemophiliacs in the Dutch Dental Journal [van Creveld et al., 1969, 1971], although another one on tooth extractions in patients with hemorrhagic disorders was published in a journal read by hematologists in the Dutch language area [van Creveld and Buchner, 1970].

ELLIS-VAN CREVELD SYNDROME

Diagnostic Criteria in Infancy

Ellis–van Creveld syndrome, also known as chondroectodermal dysplasia, is well-known to medical geneticists and is easily diagnosable clinically without radiographs in the newborn by the combination of (a) fusion of the midportion of the upper lip to the maxillary gingival margin, sometimes suggested by slight midline notching of the upper lip, which is also not movable, (b) a serrated lower alveolar ridge (Fig. 2), and (c) severely hypoplastic fingernails (Fig. 3). Natal teeth occur in at least

TABLE I. Personal Communications

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. Kerr</td>
<td>Records Manager to the Royal College of Paediatrics and Child Health</td>
</tr>
<tr>
<td>J. Koppe, Former resident</td>
<td></td>
</tr>
<tr>
<td>J. Smit, Father of a young patient treated and saved by van Creveld</td>
<td>Nurse with whom van Creveld worked</td>
</tr>
<tr>
<td>E. Haan, Nurse with whom van Creveld worked</td>
<td></td>
</tr>
<tr>
<td>R. Buchner, Dentist with whom van Creveld worked</td>
<td></td>
</tr>
</tbody>
</table>

MEDICAL SCHOOL, HOSPITAL AND RESEARCH EDUCATION, AND PROFESSIONAL APPOINTMENTS

Simon van Creveld studied medicine at the University of Amsterdam. He worked as a student-assistant to Professor B.C.P. Jansen in the Department of Physiology. After graduating with his MD in 1918, he did a locum in a general practice in a small village in the north of the country and also spent several months as a visitor in a hospital in Birmingham, UK. He then went to Groningen for almost four years to work in the Physiology Department with Professor Hamburger, where he received his PhD. There he met his future wife—Elisabeth van Dam—and together, they prepared the first batch of insulin in the Netherlands [de Bruijne, 1971].

Pediatrics did not become an official specialty in the Netherlands until 1932. There were two possible routes to consider. Two years of internal medicine in the Netherlands or doing pediatrics in another country. Simon van Creveld did both.

He did two years of Internal Medicine with Professor Snapper. He then spent six months with Professor Finkelstein in Berlin, a world renowned pediatrician at the time. This was followed by another two years in the Pediatrics Department in Amsterdam under the direction of Professor de Bruin. After that van Creveld headed up the Department of Baby Care at the Wilhemina Gasthuis from 1926 until his appointment in 1938 as Professor and Chairman of the Department of Pediatrics at the University of Amsterdam following Cornelia de Lange’s departure [de Bruijne, 1971].

PUBLICATIONS

The Dutch obituary by de Bruijne [1971] attributes approximately 500 publications to van Creveld. This figure is repeated by

FIG. 1. Professor Dr. Simon van Creveld, MD, PhD (1894–1971) From de Bruijne [1971].
25% of patients [Gorlin et al., 2001]. Certainly, infants need to be evaluated for cardiac defects (50–60%) and for respiratory compromise secondary to the abnormal thoracic cage [Gorlin et al., 2001].

Clinical Manifestations

The chest is narrow, and the extremities are short (Fig. 4). Short fingers and hypoplastic fingernails are characteristic and postaxial polydactyly is common (Fig. 3). Dental findings consist of congenitally absent teeth, small conically-shaped teeth, and wide irregular spacing between teeth. The most frequent heart defects are a single atrium and an endocardial cushion defect. About one-third of males have cryptorchidism, epispadias, and/or hypospadias [Gorlin et al., 2001].

Radiographic Findings

The tubular bones are short and thick, and the shortness progresses distally (Fig. 5). Thus, shortness of the radius and the ulna is more marked than shortness of the humerus, which may be curved. The proximal end of the ulna and the distal end of the radius are very large and the proximal end of the radius and the distal end of the ulna are very small. The wide end of the tibial shaft is irregular and the ossification centers in the proximal epiphysis are hypoplastic. The tibia is severely short [Gorlin et al., 2001].

Bilateral postaxial polydactyly of the hands (Fig. 5) is common with less common involvement of the feet. Syncarpalism (hamate-capitate) synmetacarpalism, and polymetacarpalism are common and type 37 Giedion cone-shaped epiphyses are pathognomonic [Gorlin et al., 2001].

Genua valga (Fig. 5) is based on very wide proximal tibial ends and especially on the medially placed proximal epiphyses (Fig. 6). Talipes equinovarus and talipes calcaneovalgus have been reported [Gorlin et al., 2001].

Pectus carinatum (Fig. 4) is associated with thoracic constriction (Fig. 7). The pelvis is dysplastic with low iliac wings and hook-like downward projection of the medial acetabulum (Fig. 8). The capital femoral epiphysis may ossify prematurely [Gorlin et al., 2001]. Although asphyxiating thoracic dystrophy has identical changes in the pelvis and also in the long bones and hands, it is academic because the Ellis–van Creveld syndrome is diagnosable clinically.
Genetics

EVC1 and EVC2 (Ellis–van Creveld genes 1 and 2) both map to 4p16.1 and the transcript sites are separated by 2,624 bp. EVC1 has 24 exons and EVC2 has 23 exons [OMIM, 604831, 607261]. In the Old Order Amish Community of Lancaster, 50 cases were reported by McKusick et al. [1946]. Ruiz-Pérez et al. [2000] identified a G>T substitution in intron 13 at position +5, resulting in...
p.Arg760Gln, which was found in nine branches of the family—homozygosity in affected individuals and heterozygosity in unaffected parental carriers. He also noted one heterozygous father with his heterozygous daughter, and both had heart defects and polydactyly, but no short stature. Other mutations in EVC1 and EVC2 are reviewed elsewhere [OMIM, 604831, 607261], including some EVC2 mutations for Weyers acrofacial dysostosis, indicating that the disorder is allelic to EVC2 mutations for Ellis–van Creveld syndrome.

Major References

References include the original publication [Ellis and van Creveld, 1940]; extensive review of cases [Gorlin et al., 2001; 55 references]; basic molecular defects, EVC1 gene [OMIM, 604831] and EVC2 gene [OMIM, 607261]; Ellis–van Creveld syndrome among the Amish (50 cases) [McKusick et al., 1946]; growth hormone analysis [Versteegh et al., 2007]; growth charts [Verbeek et al., 2011]; and the history of the Ellis–van Creveld syndrome [Muensterer et al., 2013].

British Paediatric Association Meeting in 1939

In 1939, the British Paediatric Association held their Twelfth Annual Meeting in Windermere at the Lake District, which is close to the border of Scotland. Both Richard W. B. Ellis and Simon van Creveld were in attendance (Fig. 9A). The title of van Creveld’s presentation was “Coronary Thrombosis in Young Infants” [British Paediatric Association Proceedings, 1939].

Even though the UK had not yet declared war on Germany, World War II had already begun. We assume that van Creveld took the Hook of Holland–Harwich boat to England and then the train to London, where Ellis was at that time. It was customary in those days for the Board of the British Paediatric Association to recommend which train to take from London to the site of the meeting, so they must have taken the same train to Windermere (H. Kerr, personal communication). They probably sat together and discussed their cases of chondroectodermal dysplasia, which led to the first publication of the Ellis–van Creveld syndrome the following year [Ellis and van Creveld, 1940]. Simon van Creveld never wrote another article on this syndrome.

THE WORLD WAR II YEARS AND VISITS TO CONCENTRATION CAMPS

With the German occupation of the Netherlands, Simon van Creveld as Professor and Chairman of the Pediatrics Department at the University of Amsterdam was discharged from his position in 1941 because he was Jewish [de Bruijne, 1971; Mauser-Bunschoten et al., 2005]. He then worked for some months at the Portuguese-Israelite Hospital in Amsterdam with Dr. Grünbaum on cystinuria. Finally he probably found refuge in a sanatorium for children at Blaricum, about 15 miles from Amsterdam during the last months of 1943.

However, during 1942 and the first 7–8 months of 1943, Simon van Creveld visited concentration camps—Camp Westerbork and Camp Vught—both in the Netherlands—several times. Two specific visits are described here.

Camp Westerbork

Medical care consisted of a hospital, polyclinic, pharmacy, and dental clinic. The camp had been set up by the Dutch Government in the late 30s to accommodate German Jews who had taken refuge in the Netherlands. Most of the doctors and specialists were Jewish. During the occupation, Commandant Gemmeker was in charge. His home was in Düsseldorf before the war. There, his own general practitioner was Dr. Spanier, a Jewish doctor. Gemmeker appointed Dr. Spanier as Chief Medical Officer at Westerbork. When Jewish patients became well, Gemmeker sent them on a train to Auschwitz [van der Werff, 2010].

In 1942, a Jewish woman had given birth to a baby boy, who was premature and both of them were transferred to Westerbork. Since the mother was unable to breast feed, Gemmeker immediately sent her on a train to Auschwitz. For the premature baby, however, he ordered an incubator and requested that Dr. van Creveld come to care for the infant [van der Werff, 2010]. He must have had safe passage to the camp, and since van Creveld had to interact with Commandant Gemmeker, he had to wear the Yellow Jewish Star (this is known from the Netherlands Institute for War Documentation). The incubator arrived the same day of van Creveld’s visit to the camp. He prescribed a special formula for the baby to be administered every hour. He also indicated that the baby should be given a drop of cognac with each feeding. Gemmeker ordered a bottle of the finest Hennessy cognac. The baby gradually grew and when he reached 6 lb, Gemmeker sent him to join his mother in Auschwitz [van der Werff, 2010]. After the war, Gemmeker, who claimed that those whom he sent to “work camps” were not “death camps,” served a term of only 7 years in jail and then walked as a free man in Düsseldorf, which angered van Creveld greatly (J. Smit, personal communication).

Camp Vught

The visit to Camp Vught was at the request of the Jewish Council, who also provided him with safe passage to the camp. A letter written
Amsterdam, May 10, 1943
Commander, s’Hertogenbosch Concentration Camp Vught, SS Colonel Chmielewsky. After my short visit last week, with your permission I visited the rooms for the sick babies in the camp. I have gained enough information to explain the high morbidity and mortality among them. In my opinion, the arrangement and conditions where these babies are treated allow for contracting infections. Modern concepts of neonatology trace their origin in large part to German pediatric research at the beginning of the century (emphasis ours).

Allow me to make some suggestions for improving the conditions.

1. The number of beds in the large rooms with both sick and healthy babies should be reduced.
2. The space between beds should be increased to minimize the chance of contact infections.
3. By creating walls between the beds with glass on top will create a semi-box system for babies with special infections.
4. Within each semi-box, towels and various utensils should not be used for other babies.
5. A wash bowl should be installed in each room so that nurses and doctors can wash their hands after they have treated a baby.
6. Each room should be equipped with a bin with a lid so that trash can be stored properly.
7. Enlargement of the windows in the rooms will allow fresh air for the babies.
8. Family visits should be limited to certain hours and only for the closest relatives.
9. Doctors and nurses should be taught the principles of modern neonatology and pediatrics. *With your permission, I would be more than happy to lecture in German to the staff (emphasis ours).*
10. Because many difficult cases require special examination and treatment, *I suggest allowing an experienced pediatrician to come on a weekly basis to consult with the medical staff. I am prepared to offer my services for this purpose (emphasis ours).*

By introducing the suggested measures together with proper nourishment will, without doubt, result in considerable improvement.

Professor Dr. S. van Creveld

After the war, van Creveld was reinstalled as Professor in Amsterdam. In an amazing first lecture to the medical students after the war in September, 1945, he retold the fact that the Dutch tolerance toward foreigners and their religions, including Jews, dated back to 1597, and stated how the Nazi occupiers had violated this agreement. He then went on to describe childhood diseases, malnutrition, and infectious diseases from that time. This is known from van Creveld’s own typewritten lecture, which also contains many other historical vignettes that go far beyond what we can indicate in this publication.

ESTABLISHMENT OF THE VAN CREVELD CLINIC

In 1950, Simon van Creveld had established a clinic in Huizen—a small village east of Amsterdam. The purpose of the clinic, which included a large garden (Fig. 9B), was for chronically ill children to recover from their respective illnesses and to enjoy the fresh air. The villa was confiscated by the Dutch government from a Nazi family who had lived there during the occupation. A subsidy was provided by the city of Amsterdam and together with private donations, this unique institution opened. That van Creveld could do this while the Netherlands was still recovering from the carnages of the war is a testimonial to his determination, passion and effectiveness for getting things done. Clearly, Simon van Creveld was an inspiring leader, who had a reputation as an empathetic and consummate clinician. He was also a demanding leader for his staff (E. Haan, J. Koppe, R. Buchner, J. Smit, personal communications).

When van Creveld retired as Professor and Chairman of the Pediatrics Department at the University of Amsterdam in 1964, he established in the same year a hemophilia clinic built on the same terrain as the existing villa (Fig. 9C). The clinic was opened on June 26 by Her Majesty Queen Juliana. Figure 9D shows Simon van Creveld with Queen Juliana bending over to accept the key to the Clinic, which is resting on a pillow and being presented to her by a little boy with hemophilia. Earlier in 1955, the Queen had knighted Simon van Creveld as a Dutch Lion, the highest award in the Netherlands for a scientist.

Simon van Creveld died suddenly in 1971. The inpatient clinic was closed on this location in 1976 because the use of cryoprecipitate made it possible to treat most patients on an outpatient basis. Both the research part of the clinic and some of the clinical affairs were transferred permanently to an existing Sanatorium in Bilthoven—a small village close to Utrecht. The staff of the van Creveld Clinic began cooperating with the Pediatrics Department and later with the Hematology Department of the University of Utrecht, which culminated in a permanent move of the van Creveld Clinic to the Utrecht University Medical Center in 1992. A visit there now (Figs. 10 and 11) shows a painting of Simon van Creveld hanging on the wall wearing the ribbon of the Dutch Lion in his lapel (Fig. 12). His portrait was painted in 1964, the year he retired from the Chair in Amsterdam and set up his hemophilia clinic in Huizen.

Van Creveld’s Interest in Research and his Mentoring of PhD Students

The research unit of the Van Creveld Clinic and its 40 year history are well-described by Mauser-Bunschoten et al. [2005]. Beginning in 1984, a yearly Van Creveld Lecture is delivered by a distinguished scientist at an Annual Symposium [Mauser-Bunschoten et al., 2005].

Such mentorship began during Simon van Creveld’s career at the University of Amsterdam. Van Mourik, van Creveld’s last PhD student, wrote of him as “the godfather of Dutch hemophilia care and ….founder of a school of talented thrombosis and hemostasis researchers” [van Mourik, 2004]. Van Creveld, in 1934, was the first to demonstrate that a dispersed protein fraction obtained from serum could reduce the clotting time of hemophilic blood [van Creveld, 1934]. Since most of his major contributions to hemophilia were in Dutch journals, they were not readily accessible to international readers [van Mourik, 2004]. Thus, 2 years later, Patek and Stetson [1936] confirmed the hypothesis and did not cite van Creveld’s hypothesis because they didn’t check the Dutch literature. A photograph of van Creveld with two other international experts on hemophilia at a meeting in 1968 is shown in Figure 13.

After being with van Creveld in the Clinic, van Mourik joined the Pediatrics Department at the University of Amsterdam in 1969. He was astonished to find van Creveld’s basic scientific equipment from the early 1960s still intact in the Pediatrics Clinic; included were (1) an original Tiselius free electrophoresis apparatus with Schlieren optics, (2) light scattering equipment, and (3) a high-voltage paper chromatography set-up [van Mourik, 2004].

LIBER AMICORUM

On the occasion of Simon van Creveld’s 70th birthday, a Liber Amicorum was held in his honor. A Liber Amicorum is a book of letters from many colleagues. In some instances, but not in van Creveld’s case, it is associated with a Festschrift. The book honoring van Creveld is located in the Archives of the Dutch Pediatrics Society. It contains 152 letters and a collection of photographs from colleagues around the world. A 1963 photo shown here shows van Creveld standing next to Bruce Boudreaux (Fig. 14), a zoologist from Louisiana State University.

HONORARY MEMBERSHIPS

Simon van Creveld was awarded many honorary memberships in pediatric and in hematologic societies from the Netherlands, the United States, Canada, Portugal, Italy, Peru, Finland, and Chile (Table II).
FIG. 10. Van Creveld Clinic at Utrecht University Medical Center. View 1.

FIG. 11. Van Creveld Clinic at Utrecht University Medical Center. View 2.
ACTA BREVIA NEERLANDICA

Appendix A explains the significance of the journal Acta Brevia Neerlandica in which van Creveld published 9 articles from 1935 to 1950. The purpose of the journal was to give Dutch medical scientific publications wider exposure by including submissions in German, French, and English. The journal cover for the first issue is shown in Figure 15.

FIG. 12. Portrait of Simon van Creveld on the wall of the Clinic wearing the Ribbon of the Dutch Lion in his lapel. It was given to him in 1955 by Her Majesty Queen Juliana as the highest award in the Netherlands for a scientist.

JEWISH BACKGROUND

From articles published, only one obituary [de Bruijne, 1971] and one chapter in the 40th anniversary volume about the van Creveld Clinic [de Knecht-van Eekelen, 2005] mention that he was Jewish, which led to his discharge as Professor and Chairman of the Pediatrics Department at the University of Amsterdam in 1941 during the German occupation of the Netherlands. It is known that

FIG. 13. Photograph of Professor van Creveld flanked by Professor Alfredo Pavlovski [left] and Professor Pier Mannuccio [right], three experts on hemophilia. The photograph was taken during the 5th Congress of the World Federation of Hemophilia in Montreal, Canada in 1968 and is reprinted in van Mourik in 2004.

FIG. 14. Simon van Creveld standing next to Bruce Boudreaux, a zoologist from Louisiana State University. The photograph was taken in Amsterdam on June 27, 1963.

TABLE II. Honorary Memberships

<table>
<thead>
<tr>
<th>Honorary Memberships</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dutch Pediatric Society</td>
</tr>
<tr>
<td>Dutch Society of Haematology</td>
</tr>
<tr>
<td>American Pediatric Society</td>
</tr>
<tr>
<td>Honorary Fellow, American Academy of Pediatrics</td>
</tr>
<tr>
<td>Canadian Pediatric Society</td>
</tr>
<tr>
<td>Portuguese Pediatric Society</td>
</tr>
<tr>
<td>Italian Society of Haematology</td>
</tr>
<tr>
<td>Peruvian Society of Haematology</td>
</tr>
<tr>
<td>Finnish Pediatric Society</td>
</tr>
<tr>
<td>Chilean Pediatric Society</td>
</tr>
</tbody>
</table>
van Creveld cherished his Jewish background. He had been a member of the Dutch Israelite Foundation beginning in 1931. The purpose of the Foundation was to help poor people. His eating habits included kosher meals. However, van Creveld was a very modern Jewish man, who was not orthodox (E. Haan and J. Koppe, personal communications).

During the 17th century, the Dutch Republic was very tolerant of all refugees. The Netherlands was the first country to welcome Jews, who were allowed to build synagogues and worship as they pleased [Schama, 1987].

The Jewish cemetery at Muiderberg, established in 1654, has 45,000 people buried there, including several outstanding scientists and politicians. There is no identification map of graves. One of us (P.S) contacted the man who maintains the grave yard and he was able to locate van Creveld’s grave stone (Fig. 16). Translating from the Dutch, it reads “Here lies my dear husband, Simon van Creveld,
Emeritus Professor of Pediatrics and Knight of the Dutch Lion. His memory should be a blessing.”

CONCLUSION

We have reviewed in its entirety for the first time the extraordinary life and career of Professor Dr. Simon van Creveld from personal communications, from his Liber Amicorum, and from documents and references in Dutch, German, French, English, and Spanish. Finally, we have provided an important account of the journal Acta Brevia Neerlandica in Appendix A.

REFERENCES

OMIM 604831 (EVC1 gene).

OMIM 607261 (EVC2 gene).

van Creveld S. 1943. Letter in German to SS. Colonel Chmielewsky at Concentration Camp Vught (translated from German).

van der Werff H. 2010. Website: The Holocaust: Lest We Forget—Camp Westerbork—Medical Care.

